This data is supplementary to article: Harri Merisaari, Pekka Taimen, Rakesh Shiradkar, Otto Ettala, Marko Pesola, Jani Saunavaara, Peter J.Boström, Anant Madabhushi, Hannu J.Aronen, IvanJambor Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer. Magnetic Resonance in Medicide harri.merisaari@utu.fi For more in detail description of the features, please see the article and Github page https://github.com/haanme/ProstateFeatures. Glossary: - ADC/ADCk: Apparent Diffusion Coefficient map of kurtosis function fitted to Diffusion Weighted Imaging data - K: Kurtosis parameter of kurtosis function - ROI: Region of Interest - LS: Lesion ROI - PM: Prostate mask ROI Data contents: +-scan_1_QC: Quality control file for 1st repetition | +- 1_L1_ADCLS.png : ROI overlaid on ADC parameter map | +- 1_L1_ADCLS_noROI.png : ADC parameter map without ROI | +- 1_L1_ADCPM.png : Prostate mask overlaid on ADC parameter map | +- 1_L1_ADCPM_noROI.png : ADC parameter map without prostate mask | . | \- N_L1_ADCPM_noROI.png +-scan_2_QC: Quality control file for 2nd repetition +-Features_ADCk_N78_rep1.txt: Radiomic features for most relevant features of 1st repetition of ADCk in training/validation set +-Features_ADCk_N78_rep2.txt: Radiomic features for most relevant features of 2nd repetition of ADCk in training/validation set +-Features_K_N78_rep1.txt: Radiomic features for most relevant features of 1st repetition of K in training/validation set \-Features_K_N78_rep2.txt: Radiomic features for most relevant features of 2nd repetition of K in training/validation set